bitwarden_crypto/enc_string/
symmetric.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
use std::{fmt::Display, str::FromStr};

use aes::cipher::typenum::U32;
use base64::{engine::general_purpose::STANDARD, Engine};
use generic_array::GenericArray;
use serde::Deserialize;

use super::{check_length, from_b64, from_b64_vec, split_enc_string};
use crate::{
    error::{CryptoError, EncStringParseError, Result},
    KeyDecryptable, KeyEncryptable, LocateKey, SymmetricCryptoKey,
};

#[cfg(feature = "wasm")]
#[wasm_bindgen::prelude::wasm_bindgen(typescript_custom_section)]
const TS_CUSTOM_TYPES: &'static str = r#"
export type EncString = string;
"#;

/// # Encrypted string primitive
///
/// [EncString] is a Bitwarden specific primitive that represents a symmetrically encrypted string.
/// They are are used together with the [KeyDecryptable] and [KeyEncryptable] traits to encrypt and
/// decrypt data using [SymmetricCryptoKey]s.
///
/// The flexibility of the [EncString] type allows for different encryption algorithms to be used
/// which is represented by the different variants of the enum.
///
/// ## Note
///
/// For backwards compatibility we will rarely if ever be able to remove support for decrypting old
/// variants, but we should be opinionated in which variants are used for encrypting.
///
/// ## Variants
/// - [AesCbc256_B64](EncString::AesCbc256_B64)
/// - [AesCbc128_HmacSha256_B64](EncString::AesCbc128_HmacSha256_B64)
/// - [AesCbc256_HmacSha256_B64](EncString::AesCbc256_HmacSha256_B64)
///
/// ## Serialization
///
/// [EncString] implements [Display] and [FromStr] to allow for easy serialization and uses a
/// custom scheme to represent the different variants.
///
/// The scheme is one of the following schemes:
/// - `[type].[iv]|[data]`
/// - `[type].[iv]|[data]|[mac]`
///
/// Where:
/// - `[type]`: is a digit number representing the variant.
/// - `[iv]`: (optional) is the initialization vector used for encryption.
/// - `[data]`: is the encrypted data.
/// - `[mac]`: (optional) is the MAC used to validate the integrity of the data.
#[derive(Clone, zeroize::ZeroizeOnDrop, PartialEq)]
#[allow(unused, non_camel_case_types)]
pub enum EncString {
    /// 0
    AesCbc256_B64 { iv: [u8; 16], data: Vec<u8> },
    /// 1
    AesCbc128_HmacSha256_B64 {
        iv: [u8; 16],
        mac: [u8; 32],
        data: Vec<u8>,
    },
    /// 2
    AesCbc256_HmacSha256_B64 {
        iv: [u8; 16],
        mac: [u8; 32],
        data: Vec<u8>,
    },
}

/// To avoid printing sensitive information, [EncString] debug prints to `EncString`.
impl std::fmt::Debug for EncString {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("EncString").finish()
    }
}

/// Deserializes an [EncString] from a string.
impl FromStr for EncString {
    type Err = CryptoError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let (enc_type, parts) = split_enc_string(s);
        match (enc_type, parts.len()) {
            ("0", 2) => {
                let iv = from_b64(parts[0])?;
                let data = from_b64_vec(parts[1])?;

                Ok(EncString::AesCbc256_B64 { iv, data })
            }
            ("1" | "2", 3) => {
                let iv = from_b64(parts[0])?;
                let data = from_b64_vec(parts[1])?;
                let mac = from_b64(parts[2])?;

                if enc_type == "1" {
                    Ok(EncString::AesCbc128_HmacSha256_B64 { iv, mac, data })
                } else {
                    Ok(EncString::AesCbc256_HmacSha256_B64 { iv, mac, data })
                }
            }

            (enc_type, parts) => Err(EncStringParseError::InvalidTypeSymm {
                enc_type: enc_type.to_string(),
                parts,
            }
            .into()),
        }
    }
}

impl EncString {
    /// Synthetic sugar for mapping `Option<String>` to `Result<Option<EncString>>`
    pub fn try_from_optional(s: Option<String>) -> Result<Option<EncString>, CryptoError> {
        s.map(|s| s.parse()).transpose()
    }

    pub fn from_buffer(buf: &[u8]) -> Result<Self> {
        if buf.is_empty() {
            return Err(EncStringParseError::NoType.into());
        }
        let enc_type = buf[0];

        match enc_type {
            0 => {
                check_length(buf, 18)?;
                let iv = buf[1..17].try_into().expect("Valid length");
                let data = buf[17..].to_vec();

                Ok(EncString::AesCbc256_B64 { iv, data })
            }
            1 | 2 => {
                check_length(buf, 50)?;
                let iv = buf[1..17].try_into().expect("Valid length");
                let mac = buf[17..49].try_into().expect("Valid length");
                let data = buf[49..].to_vec();

                if enc_type == 1 {
                    Ok(EncString::AesCbc128_HmacSha256_B64 { iv, mac, data })
                } else {
                    Ok(EncString::AesCbc256_HmacSha256_B64 { iv, mac, data })
                }
            }
            _ => Err(EncStringParseError::InvalidTypeSymm {
                enc_type: enc_type.to_string(),
                parts: 1,
            }
            .into()),
        }
    }

    pub fn to_buffer(&self) -> Result<Vec<u8>> {
        let mut buf;

        match self {
            EncString::AesCbc256_B64 { iv, data } => {
                buf = Vec::with_capacity(1 + 16 + data.len());
                buf.push(self.enc_type());
                buf.extend_from_slice(iv);
                buf.extend_from_slice(data);
            }
            EncString::AesCbc128_HmacSha256_B64 { iv, mac, data }
            | EncString::AesCbc256_HmacSha256_B64 { iv, mac, data } => {
                buf = Vec::with_capacity(1 + 16 + 32 + data.len());
                buf.push(self.enc_type());
                buf.extend_from_slice(iv);
                buf.extend_from_slice(mac);
                buf.extend_from_slice(data);
            }
        }

        Ok(buf)
    }
}

impl Display for EncString {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let parts: Vec<&[u8]> = match self {
            EncString::AesCbc256_B64 { iv, data } => vec![iv, data],
            EncString::AesCbc128_HmacSha256_B64 { iv, mac, data } => vec![iv, data, mac],
            EncString::AesCbc256_HmacSha256_B64 { iv, mac, data } => vec![iv, data, mac],
        };

        let encoded_parts: Vec<String> = parts.iter().map(|part| STANDARD.encode(part)).collect();

        write!(f, "{}.{}", self.enc_type(), encoded_parts.join("|"))?;

        Ok(())
    }
}

impl<'de> Deserialize<'de> for EncString {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        deserializer.deserialize_str(super::FromStrVisitor::new())
    }
}

impl serde::Serialize for EncString {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        serializer.serialize_str(&self.to_string())
    }
}

impl EncString {
    pub(crate) fn encrypt_aes256_hmac(
        data_dec: &[u8],
        mac_key: &GenericArray<u8, U32>,
        key: &GenericArray<u8, U32>,
    ) -> Result<EncString> {
        let (iv, mac, data) = crate::aes::encrypt_aes256_hmac(data_dec, mac_key, key)?;
        Ok(EncString::AesCbc256_HmacSha256_B64 { iv, mac, data })
    }

    /// The numerical representation of the encryption type of the [EncString].
    const fn enc_type(&self) -> u8 {
        match self {
            EncString::AesCbc256_B64 { .. } => 0,
            EncString::AesCbc128_HmacSha256_B64 { .. } => 1,
            EncString::AesCbc256_HmacSha256_B64 { .. } => 2,
        }
    }
}

impl LocateKey for EncString {}
impl KeyEncryptable<SymmetricCryptoKey, EncString> for &[u8] {
    fn encrypt_with_key(self, key: &SymmetricCryptoKey) -> Result<EncString> {
        EncString::encrypt_aes256_hmac(
            self,
            key.mac_key.as_ref().ok_or(CryptoError::InvalidMac)?,
            &key.key,
        )
    }
}

impl KeyDecryptable<SymmetricCryptoKey, Vec<u8>> for EncString {
    fn decrypt_with_key(&self, key: &SymmetricCryptoKey) -> Result<Vec<u8>> {
        match self {
            EncString::AesCbc256_B64 { iv, data } => {
                if key.mac_key.is_some() {
                    return Err(CryptoError::MacNotProvided);
                }

                let dec = crate::aes::decrypt_aes256(iv, data.clone(), &key.key)?;
                Ok(dec)
            }
            EncString::AesCbc128_HmacSha256_B64 { iv, mac, data } => {
                // TODO: SymmetricCryptoKey is designed to handle 32 byte keys only, but this
                // variant uses a 16 byte key This means the key+mac are going to be
                // parsed as a single 32 byte key, at the moment we split it manually
                // When refactoring the key handling, this should be fixed.
                let enc_key = key.key[0..16].into();
                let mac_key = key.key[16..32].into();
                let dec = crate::aes::decrypt_aes128_hmac(iv, mac, data.clone(), mac_key, enc_key)?;
                Ok(dec)
            }
            EncString::AesCbc256_HmacSha256_B64 { iv, mac, data } => {
                let mac_key = key.mac_key.as_ref().ok_or(CryptoError::InvalidMac)?;
                let dec =
                    crate::aes::decrypt_aes256_hmac(iv, mac, data.clone(), mac_key, &key.key)?;
                Ok(dec)
            }
        }
    }
}

impl KeyEncryptable<SymmetricCryptoKey, EncString> for String {
    fn encrypt_with_key(self, key: &SymmetricCryptoKey) -> Result<EncString> {
        self.as_bytes().encrypt_with_key(key)
    }
}

impl KeyEncryptable<SymmetricCryptoKey, EncString> for &str {
    fn encrypt_with_key(self, key: &SymmetricCryptoKey) -> Result<EncString> {
        self.as_bytes().encrypt_with_key(key)
    }
}

impl KeyDecryptable<SymmetricCryptoKey, String> for EncString {
    fn decrypt_with_key(&self, key: &SymmetricCryptoKey) -> Result<String> {
        let dec: Vec<u8> = self.decrypt_with_key(key)?;
        String::from_utf8(dec).map_err(|_| CryptoError::InvalidUtf8String)
    }
}

/// Usually we wouldn't want to expose EncStrings in the API or the schemas.
/// But during the transition phase we will expose endpoints using the EncString type.
impl schemars::JsonSchema for EncString {
    fn schema_name() -> String {
        "EncString".to_string()
    }

    fn json_schema(gen: &mut schemars::gen::SchemaGenerator) -> schemars::schema::Schema {
        gen.subschema_for::<String>()
    }
}

#[cfg(test)]
mod tests {
    use schemars::schema_for;

    use super::EncString;
    use crate::{
        derive_symmetric_key, CryptoError, KeyDecryptable, KeyEncryptable, SymmetricCryptoKey,
    };

    #[test]
    fn test_enc_string_roundtrip() {
        let key = derive_symmetric_key("test");

        let test_string = "encrypted_test_string";
        let cipher = test_string.to_owned().encrypt_with_key(&key).unwrap();

        let decrypted_str: String = cipher.decrypt_with_key(&key).unwrap();
        assert_eq!(decrypted_str, test_string);
    }

    #[test]
    fn test_enc_string_ref_roundtrip() {
        let key = derive_symmetric_key("test");

        let test_string = "encrypted_test_string";
        let cipher = test_string.encrypt_with_key(&key).unwrap();

        let decrypted_str: String = cipher.decrypt_with_key(&key).unwrap();
        assert_eq!(decrypted_str, test_string);
    }

    #[test]
    fn test_enc_string_serialization() {
        #[derive(serde::Serialize, serde::Deserialize)]
        struct Test {
            key: EncString,
        }

        let cipher = "2.pMS6/icTQABtulw52pq2lg==|XXbxKxDTh+mWiN1HjH2N1w==|Q6PkuT+KX/axrgN9ubD5Ajk2YNwxQkgs3WJM0S0wtG8=";
        let serialized = format!("{{\"key\":\"{cipher}\"}}");

        let t = serde_json::from_str::<Test>(&serialized).unwrap();
        assert_eq!(t.key.enc_type(), 2);
        assert_eq!(t.key.to_string(), cipher);
        assert_eq!(serde_json::to_string(&t).unwrap(), serialized);
    }

    #[test]
    fn test_enc_from_to_buffer() {
        let enc_str: &str = "2.pMS6/icTQABtulw52pq2lg==|XXbxKxDTh+mWiN1HjH2N1w==|Q6PkuT+KX/axrgN9ubD5Ajk2YNwxQkgs3WJM0S0wtG8=";
        let enc_string: EncString = enc_str.parse().unwrap();

        let enc_buf = enc_string.to_buffer().unwrap();

        assert_eq!(
            enc_buf,
            vec![
                2, 164, 196, 186, 254, 39, 19, 64, 0, 109, 186, 92, 57, 218, 154, 182, 150, 67,
                163, 228, 185, 63, 138, 95, 246, 177, 174, 3, 125, 185, 176, 249, 2, 57, 54, 96,
                220, 49, 66, 72, 44, 221, 98, 76, 209, 45, 48, 180, 111, 93, 118, 241, 43, 16, 211,
                135, 233, 150, 136, 221, 71, 140, 125, 141, 215
            ]
        );

        let enc_string_new = EncString::from_buffer(&enc_buf).unwrap();

        assert_eq!(enc_string_new.to_string(), enc_str)
    }

    #[test]
    fn test_from_str_cbc256() {
        let enc_str = "0.pMS6/icTQABtulw52pq2lg==|XXbxKxDTh+mWiN1HjH2N1w==";
        let enc_string: EncString = enc_str.parse().unwrap();

        assert_eq!(enc_string.enc_type(), 0);
        if let EncString::AesCbc256_B64 { iv, data } = &enc_string {
            assert_eq!(
                iv,
                &[164, 196, 186, 254, 39, 19, 64, 0, 109, 186, 92, 57, 218, 154, 182, 150]
            );
            assert_eq!(
                data,
                &[93, 118, 241, 43, 16, 211, 135, 233, 150, 136, 221, 71, 140, 125, 141, 215]
            );
        } else {
            panic!("Invalid variant")
        };
    }

    #[test]
    fn test_from_str_cbc128_hmac() {
        let enc_str = "1.Hh8gISIjJCUmJygpKissLQ==|MjM0NTY3ODk6Ozw9Pj9AQUJDREU=|KCkqKywtLi8wMTIzNDU2Nzg5Ojs8PT4/QEFCQ0RFRkc=";
        let enc_string: EncString = enc_str.parse().unwrap();

        assert_eq!(enc_string.enc_type(), 1);
        if let EncString::AesCbc128_HmacSha256_B64 { iv, mac, data } = &enc_string {
            assert_eq!(
                iv,
                &[30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]
            );
            assert_eq!(
                mac,
                &[
                    40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
                    60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
                ]
            );
            assert_eq!(
                data,
                &[50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69]
            );
        } else {
            panic!("Invalid variant")
        };
    }

    #[test]
    fn test_decrypt_cbc256() {
        let key = "hvBMMb1t79YssFZkpetYsM3deyVuQv4r88Uj9gvYe08=".to_string();
        let key = SymmetricCryptoKey::try_from(key).unwrap();

        let enc_str = "0.NQfjHLr6za7VQVAbrpL81w==|wfrjmyJ0bfwkQlySrhw8dA==";
        let enc_string: EncString = enc_str.parse().unwrap();
        assert_eq!(enc_string.enc_type(), 0);

        let dec_str: String = enc_string.decrypt_with_key(&key).unwrap();
        assert_eq!(dec_str, "EncryptMe!");
    }

    #[test]
    fn test_decrypt_downgrade_encstring_prevention() {
        // Simulate a potential downgrade attack by removing the mac portion of the `EncString` and
        // attempt to decrypt it using a `SymmetricCryptoKey` with a mac key.
        let key = "hvBMMb1t79YssFZkpetYsM3deyVuQv4r88Uj9gvYe0+G8EwxvW3v1iywVmSl61iwzd17JW5C/ivzxSP2C9h7Tw==".to_string();
        let key = SymmetricCryptoKey::try_from(key).unwrap();

        // A "downgraded" `EncString` from `EncString::AesCbc256_HmacSha256_B64` (2) to
        // `EncString::AesCbc256_B64` (0), with the mac portion removed.
        // <enc_string>
        let enc_str = "0.NQfjHLr6za7VQVAbrpL81w==|wfrjmyJ0bfwkQlySrhw8dA==";
        let enc_string: EncString = enc_str.parse().unwrap();
        assert_eq!(enc_string.enc_type(), 0);

        let result: Result<String, CryptoError> = enc_string.decrypt_with_key(&key);
        assert!(matches!(result, Err(CryptoError::MacNotProvided)));
    }

    #[test]
    fn test_decrypt_cbc128_hmac() {
        let key = "Gt1aZ8kTTgkF80bLtb7LiMZBcxEA2FA5mbvV4x7K208=".to_string();
        let key = SymmetricCryptoKey::try_from(key).unwrap();

        let enc_str = "1.CU/oG4VZuxbHoZSDZjCLQw==|kb1HGwAk+fQ275ORfLf5Ew==|8UaEYHyqRZcG37JWhYBOBdEatEXd1u1/wN7OuImolcM=";
        let enc_string: EncString = enc_str.parse().unwrap();
        assert_eq!(enc_string.enc_type(), 1);

        let dec_str: String = enc_string.decrypt_with_key(&key).unwrap();
        assert_eq!(dec_str, "EncryptMe!");
    }

    #[test]
    fn test_from_str_invalid() {
        let enc_str = "7.ABC";
        let enc_string: Result<EncString, _> = enc_str.parse();

        let err = enc_string.unwrap_err();
        assert_eq!(
            err.to_string(),
            "EncString error, Invalid symmetric type, got type 7 with 1 parts"
        );
    }

    #[test]
    fn test_debug_format() {
        let enc_str  = "2.pMS6/icTQABtulw52pq2lg==|XXbxKxDTh+mWiN1HjH2N1w==|Q6PkuT+KX/axrgN9ubD5Ajk2YNwxQkgs3WJM0S0wtG8=";
        let enc_string: EncString = enc_str.parse().unwrap();

        let debug_string = format!("{:?}", enc_string);
        assert_eq!(debug_string, "EncString");
    }

    #[test]
    fn test_json_schema() {
        let schema = schema_for!(EncString);

        assert_eq!(
            serde_json::to_string(&schema).unwrap(),
            r#"{"$schema":"http://json-schema.org/draft-07/schema#","title":"EncString","type":"string"}"#
        );
    }
}