bitwarden_crypto/store/context.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
use std::{
cell::Cell,
sync::{RwLockReadGuard, RwLockWriteGuard},
};
use rsa::Oaep;
use zeroize::Zeroizing;
use super::KeyStoreInner;
use crate::{
derive_shareable_key, store::backend::StoreBackend, AsymmetricCryptoKey, AsymmetricEncString,
CryptoError, EncString, KeyId, KeyIds, Result, SymmetricCryptoKey,
};
/// The context of a crypto operation using [super::KeyStore]
///
/// This will usually be accessed from an implementation of [crate::Decryptable] or
/// [crate::Encryptable], but can also be obtained through [super::KeyStore::context]
///
/// This context contains access to the user keys stored in the [super::KeyStore] (sometimes
/// referred to as `global keys`) and it also contains it's own individual secure backend for key
/// storage. Keys stored in this individual backend are usually referred to as `local keys`, they
/// will be cleared when this context goes out of scope and is dropped and they do not affect either
/// the global [super::KeyStore] or other instances of contexts.
///
/// This context-local storage is recommended for ephemeral and temporary keys that are decrypted
/// during the course of a decrypt/encrypt operation, but won't be used after the operation itself
/// is complete.
///
/// ```rust
/// # use bitwarden_crypto::*;
/// # key_ids! {
/// # #[symmetric]
/// # pub enum SymmKeyId {
/// # User,
/// # Local(&'static str),
/// # }
/// # #[asymmetric]
/// # pub enum AsymmKeyId {
/// # UserPrivate,
/// # }
/// # pub Ids => SymmKeyId, AsymmKeyId;
/// # }
/// struct Data {
/// key: EncString,
/// name: String,
/// }
/// # impl IdentifyKey<SymmKeyId> for Data {
/// # fn key_identifier(&self) -> SymmKeyId {
/// # SymmKeyId::User
/// # }
/// # }
///
/// const LOCAL_KEY: SymmKeyId = SymmKeyId::Local("local_key_id");
///
/// impl Encryptable<Ids, SymmKeyId, EncString> for Data {
/// fn encrypt(&self, ctx: &mut KeyStoreContext<Ids>, key: SymmKeyId) -> Result<EncString, CryptoError> {
/// let local_key_id = ctx.decrypt_symmetric_key_with_symmetric_key(key, LOCAL_KEY, &self.key)?;
/// self.name.encrypt(ctx, local_key_id)
/// }
/// }
/// ```
#[must_use]
pub struct KeyStoreContext<'a, Ids: KeyIds> {
pub(super) global_keys: GlobalKeys<'a, Ids>,
pub(super) local_symmetric_keys: Box<dyn StoreBackend<Ids::Symmetric>>,
pub(super) local_asymmetric_keys: Box<dyn StoreBackend<Ids::Asymmetric>>,
// Make sure the context is !Send & !Sync
pub(super) _phantom: std::marker::PhantomData<(Cell<()>, RwLockReadGuard<'static, ()>)>,
}
/// A KeyStoreContext is usually limited to a read only access to the global keys,
/// which allows us to have multiple read only contexts at the same time and do multitheaded
/// encryption/decryption. We also have the option to create a read/write context, which allows us
/// to modify the global keys, but only allows one context at a time. This is controlled by a
/// [std::sync::RwLock] on the global keys, and this struct stores both types of guards.
pub(crate) enum GlobalKeys<'a, Ids: KeyIds> {
ReadOnly(RwLockReadGuard<'a, KeyStoreInner<Ids>>),
ReadWrite(RwLockWriteGuard<'a, KeyStoreInner<Ids>>),
}
impl<Ids: KeyIds> GlobalKeys<'_, Ids> {
pub fn get(&self) -> &KeyStoreInner<Ids> {
match self {
GlobalKeys::ReadOnly(keys) => keys,
GlobalKeys::ReadWrite(keys) => keys,
}
}
pub fn get_mut(&mut self) -> Result<&mut KeyStoreInner<Ids>> {
match self {
GlobalKeys::ReadOnly(_) => Err(CryptoError::ReadOnlyKeyStore),
GlobalKeys::ReadWrite(keys) => Ok(keys),
}
}
}
impl<Ids: KeyIds> KeyStoreContext<'_, Ids> {
/// Clears all the local keys stored in this context
/// This will not affect the global keys even if this context has write access.
/// To clear the global keys, you need to use [super::KeyStore::clear] instead.
pub fn clear_local(&mut self) {
self.local_symmetric_keys.clear();
self.local_asymmetric_keys.clear();
}
/// Remove all symmetric keys from the context for which the predicate returns false
/// This will also remove the keys from the global store if this context has write access
pub fn retain_symmetric_keys(&mut self, f: fn(Ids::Symmetric) -> bool) {
if let Ok(keys) = self.global_keys.get_mut() {
keys.symmetric_keys.retain(f);
}
self.local_symmetric_keys.retain(f);
}
/// Remove all asymmetric keys from the context for which the predicate returns false
/// This will also remove the keys from the global store if this context has write access
pub fn retain_asymmetric_keys(&mut self, f: fn(Ids::Asymmetric) -> bool) {
if let Ok(keys) = self.global_keys.get_mut() {
keys.asymmetric_keys.retain(f);
}
self.local_asymmetric_keys.retain(f);
}
// TODO: All these encrypt x key with x key look like they need to be made generic,
// but I haven't found the best way to do that yet.
/// Decrypt a symmetric key into the context by using an already existing symmetric key
///
/// # Arguments
///
/// * `encryption_key` - The key id used to decrypt the `encrypted_key`. It must already exist
/// in the context
/// * `new_key_id` - The key id where the decrypted key will be stored. If it already exists, it
/// will be overwritten
/// * `encrypted_key` - The key to decrypt
pub fn decrypt_symmetric_key_with_symmetric_key(
&mut self,
encryption_key: Ids::Symmetric,
new_key_id: Ids::Symmetric,
encrypted_key: &EncString,
) -> Result<Ids::Symmetric> {
let mut new_key_material =
self.decrypt_data_with_symmetric_key(encryption_key, encrypted_key)?;
#[allow(deprecated)]
self.set_symmetric_key(
new_key_id,
SymmetricCryptoKey::try_from(new_key_material.as_mut_slice())?,
)?;
// Returning the new key identifier for convenience
Ok(new_key_id)
}
/// Encrypt and return a symmetric key from the context by using an already existing symmetric
/// key
///
/// # Arguments
///
/// * `encryption_key` - The key id used to encrypt the `key_to_encrypt`. It must already exist
/// in the context
/// * `key_to_encrypt` - The key id to encrypt. It must already exist in the context
pub fn encrypt_symmetric_key_with_symmetric_key(
&self,
encryption_key: Ids::Symmetric,
key_to_encrypt: Ids::Symmetric,
) -> Result<EncString> {
let key_to_encrypt = self.get_symmetric_key(key_to_encrypt)?;
self.encrypt_data_with_symmetric_key(encryption_key, &key_to_encrypt.to_vec())
}
/// Decrypt a symmetric key into the context by using an already existing asymmetric key
///
/// # Arguments
///
/// * `encryption_key` - The key id used to decrypt the `encrypted_key`. It must already exist
/// in the context
/// * `new_key_id` - The key id where the decrypted key will be stored. If it already exists, it
/// will be overwritten
/// * `encrypted_key` - The key to decrypt
pub fn decrypt_symmetric_key_with_asymmetric_key(
&mut self,
encryption_key: Ids::Asymmetric,
new_key_id: Ids::Symmetric,
encrypted_key: &AsymmetricEncString,
) -> Result<Ids::Symmetric> {
let mut new_key_material =
self.decrypt_data_with_asymmetric_key(encryption_key, encrypted_key)?;
#[allow(deprecated)]
self.set_symmetric_key(
new_key_id,
SymmetricCryptoKey::try_from(new_key_material.as_mut_slice())?,
)?;
// Returning the new key identifier for convenience
Ok(new_key_id)
}
/// Encrypt and return a symmetric key from the context by using an already existing asymmetric
/// key
///
/// # Arguments
///
/// * `encryption_key` - The key id used to encrypt the `key_to_encrypt`. It must already exist
/// in the context
/// * `key_to_encrypt` - The key id to encrypt. It must already exist in the context
pub fn encrypt_symmetric_key_with_asymmetric_key(
&self,
encryption_key: Ids::Asymmetric,
key_to_encrypt: Ids::Symmetric,
) -> Result<AsymmetricEncString> {
let key_to_encrypt = self.get_symmetric_key(key_to_encrypt)?;
self.encrypt_data_with_asymmetric_key(encryption_key, &key_to_encrypt.to_vec())
}
/// Decrypt an asymmetric key into the context by using an already existing asymmetric key
///
/// # Arguments
///
/// * `encryption_key` - The key id used to decrypt the `encrypted_key`. It must already exist
/// in the context
/// * `new_key_id` - The key id where the decrypted key will be stored. If it already exists, it
/// will be overwritten
/// * `encrypted_key` - The key to decrypt
pub fn decrypt_asymmetric_key_with_asymmetric_key(
&mut self,
encryption_key: Ids::Asymmetric,
new_key_id: Ids::Asymmetric,
encrypted_key: &AsymmetricEncString,
) -> Result<Ids::Asymmetric> {
let new_key_material =
self.decrypt_data_with_asymmetric_key(encryption_key, encrypted_key)?;
#[allow(deprecated)]
self.set_asymmetric_key(
new_key_id,
AsymmetricCryptoKey::from_der(&new_key_material)?,
)?;
// Returning the new key identifier for convenience
Ok(new_key_id)
}
/// Encrypt and return an asymmetric key from the context by using an already existing
/// asymmetric key
///
/// # Arguments
///
/// * `encryption_key` - The key id used to encrypt the `key_to_encrypt`. It must already exist
/// in the context
/// * `key_to_encrypt` - The key id to encrypt. It must already exist in the context
pub fn encrypt_asymmetric_key_with_asymmetric_key(
&self,
encryption_key: Ids::Asymmetric,
key_to_encrypt: Ids::Asymmetric,
) -> Result<AsymmetricEncString> {
let encryption_key = self.get_asymmetric_key(encryption_key)?;
let key_to_encrypt = self.get_asymmetric_key(key_to_encrypt)?;
AsymmetricEncString::encrypt_rsa2048_oaep_sha1(
key_to_encrypt.to_der()?.as_slice(),
encryption_key,
)
}
/// Returns `true` if the context has a symmetric key with the given identifier
pub fn has_symmetric_key(&self, key_id: Ids::Symmetric) -> bool {
self.get_symmetric_key(key_id).is_ok()
}
/// Returns `true` if the context has an asymmetric key with the given identifier
pub fn has_asymmetric_key(&self, key_id: Ids::Asymmetric) -> bool {
self.get_asymmetric_key(key_id).is_ok()
}
/// Generate a new random symmetric key and store it in the context
pub fn generate_symmetric_key(&mut self, key_id: Ids::Symmetric) -> Result<Ids::Symmetric> {
let key = SymmetricCryptoKey::generate(rand::thread_rng());
#[allow(deprecated)]
self.set_symmetric_key(key_id, key)?;
Ok(key_id)
}
/// Derive a shareable key using hkdf from secret and name and store it in the context.
///
/// A specialized variant of this function was called `CryptoService.makeSendKey` in the
/// Bitwarden `clients` repository.
pub fn derive_shareable_key(
&mut self,
key_id: Ids::Symmetric,
secret: Zeroizing<[u8; 16]>,
name: &str,
info: Option<&str>,
) -> Result<Ids::Symmetric> {
#[allow(deprecated)]
self.set_symmetric_key(key_id, derive_shareable_key(secret, name, info))?;
Ok(key_id)
}
#[deprecated(note = "This function should ideally never be used outside this crate")]
pub fn dangerous_get_symmetric_key(
&self,
key_id: Ids::Symmetric,
) -> Result<&SymmetricCryptoKey> {
self.get_symmetric_key(key_id)
}
#[deprecated(note = "This function should ideally never be used outside this crate")]
pub fn dangerous_get_asymmetric_key(
&self,
key_id: Ids::Asymmetric,
) -> Result<&AsymmetricCryptoKey> {
self.get_asymmetric_key(key_id)
}
fn get_symmetric_key(&self, key_id: Ids::Symmetric) -> Result<&SymmetricCryptoKey> {
if key_id.is_local() {
self.local_symmetric_keys.get(key_id)
} else {
self.global_keys.get().symmetric_keys.get(key_id)
}
.ok_or_else(|| crate::CryptoError::MissingKeyId(format!("{key_id:?}")))
}
fn get_asymmetric_key(&self, key_id: Ids::Asymmetric) -> Result<&AsymmetricCryptoKey> {
if key_id.is_local() {
self.local_asymmetric_keys.get(key_id)
} else {
self.global_keys.get().asymmetric_keys.get(key_id)
}
.ok_or_else(|| crate::CryptoError::MissingKeyId(format!("{key_id:?}")))
}
#[deprecated(note = "This function should ideally never be used outside this crate")]
pub fn set_symmetric_key(
&mut self,
key_id: Ids::Symmetric,
key: SymmetricCryptoKey,
) -> Result<()> {
if key_id.is_local() {
self.local_symmetric_keys.upsert(key_id, key);
} else {
self.global_keys
.get_mut()?
.symmetric_keys
.upsert(key_id, key);
}
Ok(())
}
#[deprecated(note = "This function should ideally never be used outside this crate")]
pub fn set_asymmetric_key(
&mut self,
key_id: Ids::Asymmetric,
key: AsymmetricCryptoKey,
) -> Result<()> {
if key_id.is_local() {
self.local_asymmetric_keys.upsert(key_id, key);
} else {
self.global_keys
.get_mut()?
.asymmetric_keys
.upsert(key_id, key);
}
Ok(())
}
pub(crate) fn decrypt_data_with_symmetric_key(
&self,
key: Ids::Symmetric,
data: &EncString,
) -> Result<Vec<u8>> {
let key = self.get_symmetric_key(key)?;
match data {
EncString::AesCbc256_B64 { iv, data } => {
let dec = crate::aes::decrypt_aes256(iv, data.clone(), &key.key)?;
Ok(dec)
}
EncString::AesCbc128_HmacSha256_B64 { iv, mac, data } => {
// TODO: SymmetricCryptoKey is designed to handle 32 byte keys only, but this
// variant uses a 16 byte key This means the key+mac are going to be
// parsed as a single 32 byte key, at the moment we split it manually
// When refactoring the key handling, this should be fixed.
let enc_key = (&key.key[0..16]).into();
let mac_key = (&key.key[16..32]).into();
let dec = crate::aes::decrypt_aes128_hmac(iv, mac, data.clone(), mac_key, enc_key)?;
Ok(dec)
}
EncString::AesCbc256_HmacSha256_B64 { iv, mac, data } => {
let mac_key = key.mac_key.as_ref().ok_or(CryptoError::InvalidMac)?;
let dec =
crate::aes::decrypt_aes256_hmac(iv, mac, data.clone(), mac_key, &key.key)?;
Ok(dec)
}
}
}
pub(crate) fn encrypt_data_with_symmetric_key(
&self,
key: Ids::Symmetric,
data: &[u8],
) -> Result<EncString> {
let key = self.get_symmetric_key(key)?;
EncString::encrypt_aes256_hmac(
data,
key.mac_key.as_ref().ok_or(CryptoError::InvalidMac)?,
&key.key,
)
}
pub(crate) fn decrypt_data_with_asymmetric_key(
&self,
key: Ids::Asymmetric,
data: &AsymmetricEncString,
) -> Result<Vec<u8>> {
let key = self.get_asymmetric_key(key)?;
use AsymmetricEncString::*;
match data {
Rsa2048_OaepSha256_B64 { data } => key.key.decrypt(Oaep::new::<sha2::Sha256>(), data),
Rsa2048_OaepSha1_B64 { data } => key.key.decrypt(Oaep::new::<sha1::Sha1>(), data),
#[allow(deprecated)]
Rsa2048_OaepSha256_HmacSha256_B64 { data, .. } => {
key.key.decrypt(Oaep::new::<sha2::Sha256>(), data)
}
#[allow(deprecated)]
Rsa2048_OaepSha1_HmacSha256_B64 { data, .. } => {
key.key.decrypt(Oaep::new::<sha1::Sha1>(), data)
}
}
.map_err(|_| CryptoError::KeyDecrypt)
}
pub(crate) fn encrypt_data_with_asymmetric_key(
&self,
key: Ids::Asymmetric,
data: &[u8],
) -> Result<AsymmetricEncString> {
let key = self.get_asymmetric_key(key)?;
AsymmetricEncString::encrypt_rsa2048_oaep_sha1(data, key)
}
}
#[cfg(test)]
#[allow(deprecated)]
mod tests {
use crate::{
store::{tests::DataView, KeyStore},
traits::tests::{TestIds, TestSymmKey},
Decryptable, Encryptable, SymmetricCryptoKey,
};
#[test]
fn test_set_keys_for_encryption() {
let mut rng = rand::thread_rng();
let store: KeyStore<TestIds> = KeyStore::default();
// Generate and insert a key
let key_a0_id = TestSymmKey::A(0);
let key_a0 = SymmetricCryptoKey::generate(&mut rng);
store
.context_mut()
.set_symmetric_key(TestSymmKey::A(0), key_a0.clone())
.unwrap();
assert!(store.context().has_symmetric_key(key_a0_id));
// Encrypt some data with the key
let data = DataView("Hello, World!".to_string(), key_a0_id);
let _encrypted = data.encrypt(&mut store.context(), key_a0_id).unwrap();
}
#[test]
fn test_key_encryption() {
let mut rng = rand::thread_rng();
let store: KeyStore<TestIds> = KeyStore::default();
let mut ctx = store.context();
// Generate and insert a key
let key_1_id = TestSymmKey::C(1);
let key_1 = SymmetricCryptoKey::generate(&mut rng);
ctx.set_symmetric_key(key_1_id, key_1.clone()).unwrap();
assert!(ctx.has_symmetric_key(key_1_id));
// Generate and insert a new key
let key_2_id = TestSymmKey::C(2);
let key_2 = SymmetricCryptoKey::generate(&mut rng);
ctx.set_symmetric_key(key_2_id, key_2.clone()).unwrap();
assert!(ctx.has_symmetric_key(key_2_id));
// Encrypt the new key with the old key
let key_2_enc = ctx
.encrypt_symmetric_key_with_symmetric_key(key_1_id, key_2_id)
.unwrap();
// Decrypt the new key with the old key in a different identifier
let new_key_id = TestSymmKey::C(3);
ctx.decrypt_symmetric_key_with_symmetric_key(key_1_id, new_key_id, &key_2_enc)
.unwrap();
// Now `key_2_id` and `new_key_id` contain the same key, so we should be able to encrypt
// with one and decrypt with the other
let data = DataView("Hello, World!".to_string(), key_2_id);
let encrypted = data.encrypt(&mut ctx, key_2_id).unwrap();
let decrypted1 = encrypted.decrypt(&mut ctx, key_2_id).unwrap();
let decrypted2 = encrypted.decrypt(&mut ctx, new_key_id).unwrap();
// Assert that the decrypted data is the same
assert_eq!(decrypted1.0, decrypted2.0);
}
}