bitwarden_crypto/store/
mod.rs

1//!
2//! This module contains all the necessary parts to create an in-memory key store that can be used
3//! to securely store key and use them for encryption/decryption operations.
4//!
5//! ## Organization
6//!
7//! ### Key Identifiers
8//! To avoid having to pass key materials over the crate boundaries, the key store API uses key
9//! identifiers in its API. These key identifiers are user-defined types that contain no key
10//! material, and are used to uniquely identify each key in the store. The key store doesn't specify
11//! how these traits should be implemented, but we recommend using `enums`, and we provide an
12//! optional macro ([key_ids](crate::key_ids)) that makes it easier to define them.
13//!
14//! ### Key Store
15//! [KeyStore] is a thread-safe in-memory key store and the main entry point for using this module.
16//! It provides functionality to encrypt and decrypt data using the keys stored in the store. The
17//! store is designed to be used by a single user and should not be shared between users.
18//!
19//! ### Key Store Context
20//! From a [KeyStore], you can also create an instance of [KeyStoreContext], which initializes a
21//! temporary context-local key store for encryption/decryption operations that require the use of
22//! per-item keys (like cipher keys or send keys, for example). Any keys stored in the context-local
23//! store will be cleared when the context is dropped.
24
25use std::sync::{Arc, RwLock};
26
27use rayon::{iter::Either, prelude::*};
28
29use crate::{CompositeEncryptable, Decryptable, IdentifyKey, KeyId, KeyIds};
30
31mod backend;
32mod context;
33
34use backend::{StoreBackend, create_store};
35use context::GlobalKeys;
36pub use context::KeyStoreContext;
37
38mod key_rotation;
39pub use key_rotation::*;
40
41/// An in-memory key store that provides a safe and secure way to store keys and use them for
42/// encryption/decryption operations. The store API is designed to work only on key identifiers
43/// ([KeyId]). These identifiers are user-defined types that contain no key material, which means
44/// the API users don't have to worry about accidentally leaking keys.
45///
46/// Each store is designed to be used by a single user and should not be shared between users, but
47/// the store itself is thread safe and can be cloned to share between threads.
48///
49/// ```rust
50/// # use bitwarden_crypto::*;
51///
52/// // We need to define our own key identifier types. We provide a macro to make this easier.
53/// key_ids! {
54///     #[symmetric]
55///     pub enum SymmKeyId {
56///         User,
57///         #[local]
58///         Local(LocalId),
59///     }
60///     #[asymmetric]
61///     pub enum AsymmKeyId {
62///         UserPrivate,
63///         #[local]
64///         Local(LocalId),
65///     }
66///     #[signing]
67///     pub enum SigningKeyId {
68///        UserSigning,
69///        #[local]
70///        Local(LocalId),
71///     }
72///     pub Ids => SymmKeyId, AsymmKeyId, SigningKeyId;
73/// }
74///
75/// // Initialize the store and insert a test key
76/// let store: KeyStore<Ids> = KeyStore::default();
77///
78/// #[allow(deprecated)]
79/// store.context_mut().set_symmetric_key(SymmKeyId::User, SymmetricCryptoKey::make_aes256_cbc_hmac_key());
80///
81/// // Define some data that needs to be encrypted
82/// struct Data(String);
83/// impl IdentifyKey<SymmKeyId> for Data {
84///    fn key_identifier(&self) -> SymmKeyId {
85///        SymmKeyId::User
86///    }
87/// }
88/// impl CompositeEncryptable<Ids, SymmKeyId, EncString> for Data {
89///     fn encrypt_composite(&self, ctx: &mut KeyStoreContext<Ids>, key: SymmKeyId) -> Result<EncString, CryptoError> {
90///         self.0.encrypt(ctx, key)
91///     }
92/// }
93///
94/// // Encrypt the data
95/// let decrypted = Data("Hello, World!".to_string());
96/// let encrypted = store.encrypt(decrypted).unwrap();
97/// ```
98#[derive(Clone)]
99pub struct KeyStore<Ids: KeyIds> {
100    // We use an Arc<> to make it easier to pass this store around, as we can
101    // clone it instead of passing references
102    inner: Arc<RwLock<KeyStoreInner<Ids>>>,
103}
104
105/// [KeyStore] contains sensitive data, provide a dummy [Debug] implementation.
106impl<Ids: KeyIds> std::fmt::Debug for KeyStore<Ids> {
107    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
108        f.debug_struct("KeyStore").finish()
109    }
110}
111
112struct KeyStoreInner<Ids: KeyIds> {
113    symmetric_keys: Box<dyn StoreBackend<Ids::Symmetric>>,
114    asymmetric_keys: Box<dyn StoreBackend<Ids::Asymmetric>>,
115    signing_keys: Box<dyn StoreBackend<Ids::Signing>>,
116}
117
118/// Create a new key store with the best available implementation for the current platform.
119impl<Ids: KeyIds> Default for KeyStore<Ids> {
120    fn default() -> Self {
121        Self {
122            inner: Arc::new(RwLock::new(KeyStoreInner {
123                symmetric_keys: create_store(),
124                asymmetric_keys: create_store(),
125                signing_keys: create_store(),
126            })),
127        }
128    }
129}
130
131impl<Ids: KeyIds> KeyStore<Ids> {
132    /// Clear all keys from the store. This can be used to clear all keys from memory in case of
133    /// lock/logout, and is equivalent to destroying the store and creating a new one.
134    pub fn clear(&self) {
135        let mut keys = self.inner.write().expect("RwLock is poisoned");
136        keys.symmetric_keys.clear();
137        keys.asymmetric_keys.clear();
138        keys.signing_keys.clear();
139    }
140
141    /// Initiate an encryption/decryption context. This context will have read only access to the
142    /// global keys, and will have its own local key stores with read/write access. This
143    /// context-local store will be cleared when the context is dropped.
144    ///
145    /// If you are only looking to encrypt or decrypt items, you should implement
146    /// [CompositeEncryptable]/[Decryptable] and use the [KeyStore::encrypt], [KeyStore::decrypt],
147    /// [KeyStore::encrypt_list] and [KeyStore::decrypt_list] methods instead.
148    ///
149    /// The current implementation of context only clears the keys automatically when the context is
150    /// dropped, and not between operations. This means that if you are using the same context
151    /// for multiple operations, you may want to clear it manually between them. If possible, we
152    /// recommend using [KeyStore::encrypt_list] and [KeyStore::decrypt_list] instead.
153    ///
154    /// [KeyStoreContext] is not [Send] or [Sync] and should not be shared between threads. Note
155    /// that this can also be problematic in async code, and you should take care to ensure that
156    /// you're not holding references to the context across await points, as that would cause the
157    /// future to also not be [Send].
158    ///
159    /// Some other possible use cases for this API and alternative recommendations are:
160    /// - Decrypting or encrypting multiple [Decryptable] or [CompositeEncryptable] items while
161    ///   sharing any local keys. This is not recommended as it can lead to fragile and flaky
162    ///   decryption/encryption operations. We recommend any local keys to be used only in the
163    ///   context of a single [CompositeEncryptable] or [Decryptable] implementation. In the future
164    ///   we might enforce this.
165    /// - Obtaining the key material directly. We strongly recommend against doing this as it can
166    ///   lead to key material being leaked, but we need to support it for backwards compatibility.
167    ///   If you want to access the key material to encrypt it or derive a new key from it, we
168    ///   provide functions for that:
169    ///     - [KeyStoreContext::wrap_symmetric_key]
170    ///     - [KeyStoreContext::encapsulate_key_unsigned]
171    ///     - [KeyStoreContext::derive_shareable_key]
172    pub fn context(&'_ self) -> KeyStoreContext<'_, Ids> {
173        KeyStoreContext {
174            global_keys: GlobalKeys::ReadOnly(self.inner.read().expect("RwLock is poisoned")),
175            local_symmetric_keys: create_store(),
176            local_asymmetric_keys: create_store(),
177            local_signing_keys: create_store(),
178            _phantom: std::marker::PhantomData,
179        }
180    }
181
182    /// <div class="warning">
183    /// This is an advanced API, use with care and ONLY when needing to modify the global keys.
184    ///
185    /// The same pitfalls as [Self::context] apply here, but with the added risk of accidentally
186    /// modifying the global keys and leaving the store in an inconsistent state.
187    /// If you still need to use it, make sure you read this documentation to understand how to use
188    /// it safely. </div>
189    ///
190    /// Initiate an encryption/decryption context. This context will have MUTABLE access to the
191    /// global keys, and will have its own local key stores with read/write access. This
192    /// context-local store will be cleared up when the context is dropped.
193    ///
194    /// The only supported use case for this API is initializing the store with the user's symetric
195    /// and private keys, and setting the organization keys. This method will be marked as
196    /// `pub(crate)` in the future, once we have a safe API for key initialization and updating.
197    ///
198    /// [KeyStoreContext] is not [Send] or [Sync] and should not be shared between threads. Note
199    /// that this can also be problematic in async code, and you should take care to ensure that
200    /// you're not holding references to the context across await points, as that would cause the
201    /// future to also not be [Send].
202    pub fn context_mut(&'_ self) -> KeyStoreContext<'_, Ids> {
203        KeyStoreContext {
204            global_keys: GlobalKeys::ReadWrite(self.inner.write().expect("RwLock is poisoned")),
205            local_symmetric_keys: create_store(),
206            local_asymmetric_keys: create_store(),
207            local_signing_keys: create_store(),
208            _phantom: std::marker::PhantomData,
209        }
210    }
211
212    /// Decript a single item using this key store. The key returned by `data.key_identifier()` must
213    /// already be present in the store, otherwise this will return an error.
214    /// This method is not parallelized, and is meant for single item decryption.
215    /// If you need to decrypt multiple items, use `decrypt_list` instead.
216    pub fn decrypt<Key: KeyId, Data: Decryptable<Ids, Key, Output> + IdentifyKey<Key>, Output>(
217        &self,
218        data: &Data,
219    ) -> Result<Output, crate::CryptoError> {
220        let key = data.key_identifier();
221        data.decrypt(&mut self.context(), key)
222    }
223
224    /// Encrypt a single item using this key store. The key returned by `data.key_identifier()` must
225    /// already be present in the store, otherwise this will return an error.
226    /// This method is not parallelized, and is meant for single item encryption.
227    /// If you need to encrypt multiple items, use `encrypt_list` instead.
228    pub fn encrypt<
229        Key: KeyId,
230        Data: CompositeEncryptable<Ids, Key, Output> + IdentifyKey<Key>,
231        Output,
232    >(
233        &self,
234        data: Data,
235    ) -> Result<Output, crate::CryptoError> {
236        let key = data.key_identifier();
237        data.encrypt_composite(&mut self.context(), key)
238    }
239
240    /// Decrypt a list of items using this key store. The keys returned by
241    /// `data[i].key_identifier()` must already be present in the store, otherwise this will
242    /// return an error. This method will try to parallelize the decryption of the items, for
243    /// better performance on large lists.
244    pub fn decrypt_list<
245        Key: KeyId,
246        Data: Decryptable<Ids, Key, Output> + IdentifyKey<Key> + Send + Sync,
247        Output: Send + Sync,
248    >(
249        &self,
250        data: &[Data],
251    ) -> Result<Vec<Output>, crate::CryptoError> {
252        let res: Result<Vec<_>, _> = data
253            .par_chunks(batch_chunk_size(data.len()))
254            .map(|chunk| {
255                let mut ctx = self.context();
256
257                let mut result = Vec::with_capacity(chunk.len());
258
259                for item in chunk {
260                    let key = item.key_identifier();
261                    result.push(item.decrypt(&mut ctx, key));
262                    ctx.clear_local();
263                }
264
265                result
266            })
267            .flatten()
268            .collect();
269
270        res
271    }
272
273    /// Decrypt a list of items using this key store, returning a tuple of successful and failed
274    /// items.
275    ///
276    /// # Arguments
277    /// * `data` - The list of items to decrypt.
278    ///
279    /// # Returns
280    /// A tuple containing two vectors: the first vector contains the successfully decrypted items,
281    /// and the second vector contains the original items that failed to decrypt.
282    pub fn decrypt_list_with_failures<
283        'a,
284        Key: KeyId,
285        Data: Decryptable<Ids, Key, Output> + IdentifyKey<Key> + Send + Sync + 'a,
286        Output: Send + Sync,
287    >(
288        &self,
289        data: &'a [Data],
290    ) -> (Vec<Output>, Vec<&'a Data>) {
291        let results: (Vec<_>, Vec<_>) = data
292            .par_chunks(batch_chunk_size(data.len()))
293            .flat_map(|chunk| {
294                let mut ctx = self.context();
295
296                chunk
297                    .iter()
298                    .map(|item| {
299                        let result = item
300                            .decrypt(&mut ctx, item.key_identifier())
301                            .map_err(|_| item);
302                        ctx.clear_local();
303                        result
304                    })
305                    .collect::<Vec<_>>()
306            })
307            .partition_map(|result| match result {
308                Ok(output) => Either::Left(output),
309                Err(original_item) => Either::Right(original_item),
310            });
311
312        results
313    }
314
315    /// Encrypt a list of items using this key store. The keys returned by
316    /// `data[i].key_identifier()` must already be present in the store, otherwise this will
317    /// return an error. This method will try to parallelize the encryption of the items, for
318    /// better performance on large lists. This method is not parallelized, and is meant for
319    /// single item encryption.
320    pub fn encrypt_list<
321        Key: KeyId,
322        Data: CompositeEncryptable<Ids, Key, Output> + IdentifyKey<Key> + Send + Sync,
323        Output: Send + Sync,
324    >(
325        &self,
326        data: &[Data],
327    ) -> Result<Vec<Output>, crate::CryptoError> {
328        let res: Result<Vec<_>, _> = data
329            .par_chunks(batch_chunk_size(data.len()))
330            .map(|chunk| {
331                let mut ctx = self.context();
332
333                let mut result = Vec::with_capacity(chunk.len());
334
335                for item in chunk {
336                    let key = item.key_identifier();
337                    result.push(item.encrypt_composite(&mut ctx, key));
338                    ctx.clear_local();
339                }
340
341                result
342            })
343            .flatten()
344            .collect();
345
346        res
347    }
348}
349
350/// Calculate the optimal chunk size for parallelizing encryption/decryption operations.
351fn batch_chunk_size(len: usize) -> usize {
352    // In an optimal scenario with no overhead, we would split the data evenly between
353    // all available threads, rounding up to the nearest integer.
354    let items_per_thread = usize::div_ceil(len, rayon::current_num_threads());
355
356    // Because the addition of each chunk has some overhead (e.g. creating a new context, thread
357    // synchronization), we want to split the data into chunks that are large enough to amortize
358    // this overhead, but not too large that we get no benefit from multithreading. We've chosen
359    // a value more or less arbitrarily, but it seems to work well in practice.
360    const MINIMUM_CHUNK_SIZE: usize = 50;
361
362    // As a result, we pick whichever of the two values is larger.
363    usize::max(items_per_thread, MINIMUM_CHUNK_SIZE)
364}
365
366#[cfg(test)]
367pub(crate) mod tests {
368    use crate::{
369        EncString, PrimitiveEncryptable, SymmetricCryptoKey,
370        store::{KeyStore, KeyStoreContext},
371        traits::tests::{TestIds, TestSymmKey},
372    };
373
374    pub struct DataView(pub String, pub TestSymmKey);
375    pub struct Data(pub EncString, pub TestSymmKey);
376
377    impl crate::IdentifyKey<TestSymmKey> for DataView {
378        fn key_identifier(&self) -> TestSymmKey {
379            self.1
380        }
381    }
382
383    impl crate::IdentifyKey<TestSymmKey> for Data {
384        fn key_identifier(&self) -> TestSymmKey {
385            self.1
386        }
387    }
388
389    impl crate::CompositeEncryptable<TestIds, TestSymmKey, Data> for DataView {
390        fn encrypt_composite(
391            &self,
392            ctx: &mut KeyStoreContext<TestIds>,
393            key: TestSymmKey,
394        ) -> Result<Data, crate::CryptoError> {
395            Ok(Data(self.0.encrypt(ctx, key)?, key))
396        }
397    }
398
399    impl crate::Decryptable<TestIds, TestSymmKey, DataView> for Data {
400        fn decrypt(
401            &self,
402            ctx: &mut KeyStoreContext<TestIds>,
403            key: TestSymmKey,
404        ) -> Result<DataView, crate::CryptoError> {
405            Ok(DataView(self.0.decrypt(ctx, key)?, key))
406        }
407    }
408
409    #[test]
410    fn test_multithread_decrypt_keeps_order() {
411        let store: KeyStore<TestIds> = KeyStore::default();
412
413        // Create a bunch of random keys
414        for n in 0..15 {
415            #[allow(deprecated)]
416            store
417                .context_mut()
418                .set_symmetric_key(
419                    TestSymmKey::A(n),
420                    SymmetricCryptoKey::make_aes256_cbc_hmac_key(),
421                )
422                .unwrap();
423        }
424
425        // Create some test data
426        let data: Vec<_> = (0..300usize)
427            .map(|n| DataView(format!("Test {n}"), TestSymmKey::A((n % 15) as u8)))
428            .collect();
429
430        // Encrypt the data
431        let encrypted: Vec<_> = store.encrypt_list(&data).unwrap();
432
433        // Decrypt the data
434        let decrypted: Vec<_> = store.decrypt_list(&encrypted).unwrap();
435
436        // Check that the data is the same, and in the same order as the original
437        for (orig, dec) in data.iter().zip(decrypted.iter()) {
438            assert_eq!(orig.0, dec.0);
439            assert_eq!(orig.1, dec.1);
440        }
441    }
442}