bitwarden_crypto/traits/
encryptable.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
use crate::{store::KeyStoreContext, AsymmetricEncString, CryptoError, EncString, KeyId, KeyIds};

/// An encryption operation that takes the input value and encrypts it into the output value.
/// Implementations should generally consist of calling [Encryptable::encrypt] for all the fields of
/// the type.
pub trait Encryptable<Ids: KeyIds, Key: KeyId, Output> {
    fn encrypt(&self, ctx: &mut KeyStoreContext<Ids>, key: Key) -> Result<Output, CryptoError>;
}

impl<Ids: KeyIds> Encryptable<Ids, Ids::Symmetric, EncString> for &[u8] {
    fn encrypt(
        &self,
        ctx: &mut KeyStoreContext<Ids>,
        key: Ids::Symmetric,
    ) -> Result<EncString, CryptoError> {
        ctx.encrypt_data_with_symmetric_key(key, self)
    }
}

impl<Ids: KeyIds> Encryptable<Ids, Ids::Asymmetric, AsymmetricEncString> for &[u8] {
    fn encrypt(
        &self,
        ctx: &mut KeyStoreContext<Ids>,
        key: Ids::Asymmetric,
    ) -> Result<AsymmetricEncString, CryptoError> {
        ctx.encrypt_data_with_asymmetric_key(key, self)
    }
}

impl<Ids: KeyIds> Encryptable<Ids, Ids::Symmetric, EncString> for Vec<u8> {
    fn encrypt(
        &self,
        ctx: &mut KeyStoreContext<Ids>,
        key: Ids::Symmetric,
    ) -> Result<EncString, CryptoError> {
        ctx.encrypt_data_with_symmetric_key(key, self)
    }
}

impl<Ids: KeyIds> Encryptable<Ids, Ids::Asymmetric, AsymmetricEncString> for Vec<u8> {
    fn encrypt(
        &self,
        ctx: &mut KeyStoreContext<Ids>,
        key: Ids::Asymmetric,
    ) -> Result<AsymmetricEncString, CryptoError> {
        ctx.encrypt_data_with_asymmetric_key(key, self)
    }
}

impl<Ids: KeyIds> Encryptable<Ids, Ids::Symmetric, EncString> for &str {
    fn encrypt(
        &self,
        ctx: &mut KeyStoreContext<Ids>,
        key: Ids::Symmetric,
    ) -> Result<EncString, CryptoError> {
        self.as_bytes().encrypt(ctx, key)
    }
}

impl<Ids: KeyIds> Encryptable<Ids, Ids::Asymmetric, AsymmetricEncString> for &str {
    fn encrypt(
        &self,
        ctx: &mut KeyStoreContext<Ids>,
        key: Ids::Asymmetric,
    ) -> Result<AsymmetricEncString, CryptoError> {
        self.as_bytes().encrypt(ctx, key)
    }
}

impl<Ids: KeyIds> Encryptable<Ids, Ids::Symmetric, EncString> for String {
    fn encrypt(
        &self,
        ctx: &mut KeyStoreContext<Ids>,
        key: Ids::Symmetric,
    ) -> Result<EncString, CryptoError> {
        self.as_bytes().encrypt(ctx, key)
    }
}

impl<Ids: KeyIds> Encryptable<Ids, Ids::Asymmetric, AsymmetricEncString> for String {
    fn encrypt(
        &self,
        ctx: &mut KeyStoreContext<Ids>,
        key: Ids::Asymmetric,
    ) -> Result<AsymmetricEncString, CryptoError> {
        self.as_bytes().encrypt(ctx, key)
    }
}

impl<Ids: KeyIds, Key: KeyId, T: Encryptable<Ids, Key, Output>, Output>
    Encryptable<Ids, Key, Option<Output>> for Option<T>
{
    fn encrypt(
        &self,
        ctx: &mut KeyStoreContext<Ids>,
        key: Key,
    ) -> Result<Option<Output>, CryptoError> {
        self.as_ref()
            .map(|value| value.encrypt(ctx, key))
            .transpose()
    }
}

impl<Ids: KeyIds, Key: KeyId, T: Encryptable<Ids, Key, Output>, Output>
    Encryptable<Ids, Key, Vec<Output>> for Vec<T>
{
    fn encrypt(
        &self,
        ctx: &mut KeyStoreContext<Ids>,
        key: Key,
    ) -> Result<Vec<Output>, CryptoError> {
        self.iter().map(|value| value.encrypt(ctx, key)).collect()
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        traits::tests::*, AsymmetricCryptoKey, Decryptable, Encryptable, KeyStore,
        SymmetricCryptoKey,
    };

    fn test_store() -> KeyStore<TestIds> {
        let store = KeyStore::<TestIds>::default();

        let symm_key = SymmetricCryptoKey::generate(rand::thread_rng());
        let asymm_key = AsymmetricCryptoKey::generate(&mut rand::thread_rng());

        #[allow(deprecated)]
        store
            .context_mut()
            .set_symmetric_key(TestSymmKey::A(0), symm_key.clone())
            .unwrap();
        #[allow(deprecated)]
        store
            .context_mut()
            .set_asymmetric_key(TestAsymmKey::A(0), asymm_key.clone())
            .unwrap();

        store
    }

    #[test]
    fn test_encryptable_bytes() {
        let store = test_store();
        let mut ctx = store.context();
        let key = TestSymmKey::A(0);

        let vec_data = vec![1, 2, 3, 4, 5];
        let slice_data: &[u8] = &vec_data;

        let vec_encrypted = vec_data.encrypt(&mut ctx, key).unwrap();
        let slice_encrypted = slice_data.encrypt(&mut ctx, key).unwrap();

        let vec_decrypted: Vec<u8> = vec_encrypted.decrypt(&mut ctx, key).unwrap();
        let slice_decrypted: Vec<u8> = slice_encrypted.decrypt(&mut ctx, key).unwrap();

        assert_eq!(vec_data, vec_decrypted);
        assert_eq!(slice_data, slice_decrypted);
    }

    #[test]
    fn test_encryptable_string() {
        let store = test_store();
        let mut ctx = store.context();
        let key = TestSymmKey::A(0);

        let string_data = "Hello, World!".to_string();
        let str_data: &str = string_data.as_str();

        let string_encrypted = string_data.encrypt(&mut ctx, key).unwrap();
        let str_encrypted = str_data.encrypt(&mut ctx, key).unwrap();

        let string_decrypted: String = string_encrypted.decrypt(&mut ctx, key).unwrap();
        let str_decrypted: String = str_encrypted.decrypt(&mut ctx, key).unwrap();

        assert_eq!(string_data, string_decrypted);
        assert_eq!(str_data, str_decrypted);
    }

    #[test]
    fn test_encryptable_bytes_asymmetric() {
        let store = test_store();
        let mut ctx = store.context();
        let key = TestAsymmKey::A(0);

        let vec_data = vec![1, 2, 3, 4, 5];
        let slice_data: &[u8] = &vec_data;

        let vec_encrypted = vec_data.encrypt(&mut ctx, key).unwrap();
        let slice_encrypted = slice_data.encrypt(&mut ctx, key).unwrap();

        let vec_decrypted: Vec<u8> = vec_encrypted.decrypt(&mut ctx, key).unwrap();
        let slice_decrypted: Vec<u8> = slice_encrypted.decrypt(&mut ctx, key).unwrap();

        assert_eq!(vec_data, vec_decrypted);
        assert_eq!(slice_data, slice_decrypted);
    }

    #[test]
    fn test_encryptable_string_asymmetric() {
        let store = test_store();
        let mut ctx = store.context();
        let key = TestAsymmKey::A(0);

        let string_data = "Hello, World!".to_string();
        let str_data: &str = string_data.as_str();

        let string_encrypted = string_data.encrypt(&mut ctx, key).unwrap();
        let str_encrypted = str_data.encrypt(&mut ctx, key).unwrap();

        let string_decrypted: String = string_encrypted.decrypt(&mut ctx, key).unwrap();
        let str_decrypted: String = str_encrypted.decrypt(&mut ctx, key).unwrap();

        assert_eq!(string_data, string_decrypted);
        assert_eq!(str_data, str_decrypted);
    }

    #[test]
    fn test_encryptable_option_some() {
        let store = test_store();
        let mut ctx = store.context();
        let key = TestSymmKey::A(0);

        let string_data = Some("Hello, World!".to_string());

        let string_encrypted = string_data.encrypt(&mut ctx, key).unwrap();

        let string_decrypted: Option<String> = string_encrypted.decrypt(&mut ctx, key).unwrap();

        assert_eq!(string_data, string_decrypted);
    }

    #[test]
    fn test_encryptable_option_none() {
        let store = test_store();
        let mut ctx = store.context();

        let key = TestSymmKey::A(0);
        let none_data: Option<String> = None;
        let string_encrypted = none_data.encrypt(&mut ctx, key).unwrap();
        assert_eq!(string_encrypted, None);

        // The None implementation will not do any decrypt operations, so it won't fail even if the
        // key doesn't exist
        let bad_key = TestSymmKey::B((0, 1));
        let string_encrypted_bad = none_data.encrypt(&mut ctx, bad_key).unwrap();
        assert_eq!(string_encrypted_bad, None);
    }
}